
Introduction
Extremely lazy compilation

Code versioning
Conclusion

Code Versioning and Extremely Lazy Compilation of
Scheme

Baptiste Saleil & Marc Feeley

Université de Montréal

November 19, 2014

1 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

1 Introduction

2 Extremely lazy compilation

3 Code versioning

4 Conclusion

2 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Static vs Dynamic type checking

Static type checking
Types are known at compile time
Type errors are detected at compilation

Dynamic type checking
No type information at compile time
Type checks embedded in generated code

→ Remove dynamic type checks

3 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Static vs Dynamic type checking

Static type checking
Types are known at compile time
Type errors are detected at compilation

Dynamic type checking
No type information at compile time
Type checks embedded in generated code

→ Remove dynamic type checks

4 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

JIT compilers :
Portability & Performance
Lazy compilation
Compilation time → Execution time

Existing solutions :
Type inference
→ Detect types at compilation, remove type tests
→ Implies static analysis
Type annotation
→ Type hints to compiler
→ Lose expressiveness of dynamic languages

5 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

JIT compilers :
Portability & Performance
Lazy compilation
Compilation time → Execution time

Existing solutions :
Type inference
→ Detect types at compilation, remove type tests
→ Implies static analysis

Type annotation
→ Type hints to compiler
→ Lose expressiveness of dynamic languages

6 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

JIT compilers :
Portability & Performance
Lazy compilation
Compilation time → Execution time

Existing solutions :
Type inference
→ Detect types at compilation, remove type tests
→ Implies static analysis
Type annotation
→ Type hints to compiler
→ Lose expressiveness of dynamic languages

7 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Goals

Remove as many type checks as possible

Avoid expensive static analysis

Keep expressiveness of dynamically typed languages

8 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Goals

Remove as many type checks as possible

Avoid expensive static analysis

Keep expressiveness of dynamically typed languages

9 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Goals

Remove as many type checks as possible

Avoid expensive static analysis

Keep expressiveness of dynamically typed languages

10 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

1 Introduction

2 Extremely lazy compilation

3 Code versioning

4 Conclusion

11 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

What is extremely lazy compilation ?

(+ (- a 10) a)

An analysis shows that type test on a is unnecessary

12 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

What is extremely lazy compilation ?

(+ (- a 10) a)

An analysis shows that type test on a is unnecessary

13 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

What is extremely lazy compilation ?

(+ (- a 10) a)

An analysis shows that type test on a is unnecessary
Left operand → Right operand → Addition

14 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

What is extremely lazy compilation ?

(+ (- a 10) a)

An analysis shows that type test on a is unnecessary
Left operand → Right operand → Addition

Our approach
Why not use the information from execution of predecessors to
optimize code generation of current node ?

→ Each node of s-expression is a stub

15 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Lazy code object

Code generator which take a compilation context
Successor object
Entry point

16 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Lazy code object chain

1 (define (gen -ast ast successor)
2 ...
3 (if (number? ast)
4 (make -lazy -code
5 (lambda (ctx)
6 (gen -push (encode ast))
7 (jump -to successor (push -ctx ’number ctx )))))
8 ...
9 (if (eq? (car ast) ’+)

10 (let* ((lazy -add
11 (make -lazy -code
12 (lambda (ctx)
13 (gen -pop r1)
14 (gen -pop r2)
15 (cond ((not (number? (stack -first ctx)))
16 (gen -check -if-number r1 ctx))
17 ((not (number? (stack -second ctx)))
18 (gen -check -if-number r2 ctx)))
19 (gen -add r1 r2)
20 (gen -push r1)
21 (jump -to successor
22 (push -ctx ’number
23 (pop -ctx (pop -ctx ctx )))))))
24 (lazy -arg1
25 (gen -ast (caddr ast) lazy -add)))
26 (gen -ast (cadr ast) lazy -arg1 )))
27 ...)

17 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Lazy code object chain

Run expression

1 (let ((obj (gen -ast ’(+ (- a 10) a)
2 (make -lazy -code
3 (lambda (ctx)
4 (gen -pop r1)
5 (gen -return ))))))
6 (execute obj init -ctx))

18 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Example : (+ (- a 10) a)

19 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Example : (+ (- a 10) a)

20 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Example : (+ (- a 10) a)

21 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Example : (+ (- a 10) a)

22 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Example : (+ (- a 10) a)

23 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Example : (+ (- a 10) a)

24 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Example : (+ (- a 10) a)

25 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Problem - How to handle join points ?

(let ((a (if b
10
(read ))))

(+ a 100))

26 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Problem - How to handle join points ?

(let ((a (if b
10
(read ))))

(+ a 100))

27 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Problem - How to handle join points ?

(let ((a (if b
10
(read ))))

(+ a 100))

28 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

1 Introduction

2 Extremely lazy compilation

3 Code versioning

4 Conclusion

29 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Concept

Each lazy code object has multiple versions
Each version associated to compilation context
Each piece of code now has multiple entry points

30 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Lazy code object

Code generator
Successor object
Context→Address table

CTX4 = ’(number number)

CTX1 = ’(number unknown)

CTX5 = ’(number string)

31 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Lazy code object

Code generator
Successor object
Context→Address table

CTX4 = ’(number number)

CTX1 = ’(number unknown)

CTX5 = ’(number string)

32 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Complete example with join point

(let ((a (if b
10
(read ))))

(+ a 100))

33 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Problem 1

Functions also have multiple entry points
Flat closure representation is not suitable

→ New closure representation (cc-table)

Add indirection

34 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Problem 1

Functions also have multiple entry points
Flat closure representation is not suitable

→ New closure representation (cc-table)

Add indirection

35 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Problem 1

Functions also have multiple entry points
Flat closure representation is not suitable

→ New closure representation (cc-table)

Add indirection

36 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Problem 2

We don’t know statically which function we call
What is the offset corresponding to calling context ?

→ Keep a global cc-table

Possible combinatory explosion

37 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

1 Introduction

2 Extremely lazy compilation

3 Code versioning

4 Conclusion

38 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Summary

Pros
Remove type checks if unnecessary
Remove type checks if unnecessary in some execution
Suitable for JIT compilation
Keep dynamic language expressivity

Cons
Size problem
→ Balanced by lazy compilation
Indirection on call
→ Can avoid several type checks
Heap overflow on pathological cases

39 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Results :
No extensive benchmark results yet
Observation : A lot of type checks are removed

Remaining work :
Benchmarking !
Improve context propagation
Analyze heap / memory consumption

40 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Thanks !

Baptiste Saleil
baptiste.saleil@umontreal.ca

41 / 41


	Introduction
	Extremely lazy compilation
	Code versioning
	Conclusion

