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Static vs Dynamic type checking

Static type checking
Types are known at compile time
Type errors are detected at compilation

Dynamic type checking
No type information at compile time
Type checks embedded in generated code

→ Remove dynamic type checks
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JIT compilers :
Portability & Performance
Lazy compilation
Compilation time → Execution time

Existing solutions :
Type inference
→ Detect types at compilation, remove type tests
→ Implies static analysis
Type annotation
→ Type hints to compiler
→ Lose expressiveness of dynamic languages
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Goals

Remove as many type checks as possible

Avoid expensive static analysis

Keep expressiveness of dynamically typed languages
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What is extremely lazy compilation ?

(+ (- a 10) a)

An analysis shows that type test on a is unnecessary
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What is extremely lazy compilation ?

(+ (- a 10) a)

An analysis shows that type test on a is unnecessary
Left operand → Right operand → Addition

Our approach
Why not use the information from execution of predecessors to
optimize code generation of current node ?

→ Each node of s-expression is a stub
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Lazy code object

Code generator which take a compilation context
Successor object
Entry point
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Lazy code object chain

1 (define (gen -ast ast successor)
2 ...
3 (if (number? ast)
4 (make -lazy -code
5 (lambda (ctx)
6 (gen -push (encode ast))
7 (jump -to successor (push -ctx ’number ctx )))))
8 ...
9 (if (eq? (car ast) ’+)

10 (let* ((lazy -add
11 (make -lazy -code
12 (lambda (ctx)
13 (gen -pop r1)
14 (gen -pop r2)
15 (cond ((not (number? (stack -first ctx)))
16 (gen -check -if-number r1 ctx))
17 ((not (number? (stack -second ctx)))
18 (gen -check -if-number r2 ctx)))
19 (gen -add r1 r2)
20 (gen -push r1)
21 (jump -to successor
22 (push -ctx ’number
23 (pop -ctx (pop -ctx ctx )))))))
24 (lazy -arg1
25 (gen -ast (caddr ast) lazy -add)))
26 (gen -ast (cadr ast) lazy -arg1 )))
27 ...)
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Lazy code object chain

Run expression

1 (let ((obj (gen -ast ’(+ (- a 10) a)
2 (make -lazy -code
3 (lambda (ctx)
4 (gen -pop r1)
5 (gen -return ))))))
6 (execute obj init -ctx))
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Problem - How to handle join points ?

(let ((a (if b
10
(read ))))

(+ a 100))
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Concept

Each lazy code object has multiple versions
Each version associated to compilation context
Each piece of code now has multiple entry points
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Lazy code object

Code generator
Successor object
Context→Address table

CTX4 = ’(number number)

CTX1 = ’(number unknown)

CTX5 = ’(number string)

31 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Lazy code object

Code generator
Successor object
Context→Address table

CTX4 = ’(number number)

CTX1 = ’(number unknown)

CTX5 = ’(number string)

32 / 41



Introduction
Extremely lazy compilation

Code versioning
Conclusion

Complete example with join point

(let ((a (if b
10
(read ))))

(+ a 100))
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Problem 1

Functions also have multiple entry points
Flat closure representation is not suitable

→ New closure representation (cc-table)

Add indirection
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Problem 2

We don’t know statically which function we call
What is the offset corresponding to calling context ?

→ Keep a global cc-table

Possible combinatory explosion
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Summary

Pros
Remove type checks if unnecessary
Remove type checks if unnecessary in some execution
Suitable for JIT compilation
Keep dynamic language expressivity

Cons
Size problem
→ Balanced by lazy compilation
Indirection on call
→ Can avoid several type checks
Heap overflow on pathological cases
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Results :
No extensive benchmark results yet
Observation : A lot of type checks are removed

Remaining work :
Benchmarking !
Improve context propagation
Analyze heap / memory consumption
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Thanks !

Baptiste Saleil
baptiste.saleil@umontreal.ca
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